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Residence time distribution for a class of Gaussian Markov processes
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We study the distribution of residence time or equivalently that of “mean magnetization” for a family of
Gaussian Markov processes indexed by a positive paramefEne persistence exponent for these processes
is simply given by#=a«a but the residence time distribution is nontrivial. The shape of this distribution
undergoes a qualitative change @sncreases, indicating a sharp change in the ergodic properties of the
process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution
for arbitrary «. For some special values ef we obtain closed form expressions of the distribution function.
[S1063-651%99)03306-1

PACS numbdss): 02.50.Ey, 05.40-a

[. INTRODUCTION function. Thusr (t) is simply the fraction of time spent by
the procesg/(t) within time t on one side of zero. It was

The problem opersistencen spatially extended nonequi- shown in Ref[25] that for any Gaussian stochastic process,
librium systems has recently generated a lot of interest botthe distributionf(r) is independent of time&. For Gaussian
theoretically[1-7] and experimentallyf8—10. These sys- processes with zero mean, the symmatayg(1—r) indi-
tems include the Ising or Potts model undergoing phase ofeates that the functiof(r) is symmetric around=1/2. Also
dering dynamic$1—4,11-16, the simple diffusion equation in the limitr —0 (and symmetrically for — 1), the function
with random initial conditiong5,6], several reaction diffu- f(r) is clearly the probability that the process remains only
sion systems in both pufd7] and disordered18] environ-  on one side of zero and hence is proportional to persistence.
ments, fluctuating interfac¢$9-21, Lotka-Volterra models  This indicates that as— 0, the functionf (r) must behave as
[22], and inelastic collapse of a randomly forced particle~r?~! [and as~(1-r)?"! for r—1], so that f(r)dr
[23]. In many of these systems the spatial degrees of freedomt~¢ 3sr —0 or 1. A somewhat more convenient variable is
of the original many body problem can be integrated out anghe “mean magnetization“[24] m(t)=2r(t)—1, whose
the problem of persistence effectively reduces to the calcurange is[—1,1] and whose distribution functiorP(m)
lation of the probabilityP,(t) of no zero crossing up to some = 1f((1+m)/2) is symmetric aroundn=0 and behaves as
time t of an effective single site stochastic procggs). P(m)~(1+m)? ! nearm=*1.

In most cases of interests, this probability decays as a The distributionP(m) is known exactly for the process
power law for large timePq(t)~t~’ where the persistence that represents the position of a one-dimensional Brownian
exponentd is nontrivial. This nontriviality can be traced walker [26]. Lamperti[27] derived an exact expression of
back to the fact that once the spatial degrees of freedom am(m) for a class of renewal processes where successive zero
integrated out, the effective single site procgéy becomes crossing intervals are statistically independent. Recently a
non-Markovian. For a non-Markovian process, it is well special case of Lamperti's resufta7], when the successive
known that the calculation of any history dependent quantityintervals are distributed according to a lyelaw, was re-
such as persistencéo zero crossing probabilityis ex-  derived by Baldassast al. [28] by a different method. The
tremely hard29,30. As an example, for the diffusion equa- distribution P(m) has been determined numerically for dif-
tion with a random initial condition, the effective single site fusion equatior{25] and for interface growth mode[21].
procesg/(t) is a Gaussian non-Markovian process characterBesides, moments dP(m) have been determined analyti-
ized by its two-time correlatory(t,)y(t,))=[4tt,/(t;  cally for diffusion equation under the independent interval
+1,)2]%9, whered is the spatial dimensiofb]. Even for this  approximation24].
simple case, the corresponding persistence expo#eist The distribution functiorP(m) provides a more detailed
nontrivial and is known only numerically and approximately information on the statistical nature of the stochastic process
from analytical methodg5,25], but not exactly yet. Re- y(t). For example, in the context of diffusion equation it was
cently, however, an exact series expansion result for the expointed out by Newman and ToroczK&5] that interesting
ponent & has been derived for arbitrary smooth Gaussiarinformation can be extracted from the shape of the function
processes that includes the diffusion equafiéh P(m). For diffusion equation, the exponem{(d) [which

Recently it was arguef24,25 that given this stochastic controls the shape of the functidd(m) nearm=*+1] in-
processy(t), it might be useful to investigate a more generalcreases monotonically with space dimensibhere exists
quantity, namely the “residence time distribution,” whose a critical dimensiond, where 6(d.)=1 such that ford
limiting behavior determines the persistence exponent. This<d., #<1 and the functiorP(m) diverges asn— =1, has
is the distribution f(r,t) of the random variabler(t) a minimum atm=0 and is concave upwards in the range
=(1/t)[H6[y(t")]dt’, where 6(x) is the Heaviside theta [—1,1]. On the other hand, fod>d., #>1, the function
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P(m) goes to zero asi— * 1, has a maximum ah=0 and method we generalize the formalism developed by Kid
is convex upwards if—1,1]. The peak of the distribution for a=1/2 case to arbitrary. In the second method, we use
shifts from the edgesn=+1 to the centemm=0 asd in-  the formalism recently developed in the context of diffusion
creases througtl, . Thus ford<d,, the most probable con- equation by Dornic and Godrke [24] using independent
figurations of the procesg(t) are the ones which do not interval approximation(llA). We point out, however, that
cross zero whereas such configurations are least probable fotile this latter method yields only approximate results for
d>d,, the existence of a sharp change in the ergodic propthe diffusion equatiof24], it gives exact results for the Mar-
erties of the diffusion field. Such detailed information is notkov processes that we study in this paper.
contained in the persistence exponéntn Ref.[25], d, for The paper is organized as follows. In Sec. Il, we general-
diffusion equation was approximately determinegk 36. ize Kac's formalism fora=1/2 to arbitrarya and derive an
This useful information contained iR(m) of the diffu-  exact recursion relations satisfied by the moment® (ofh).
sion equation have not yet been possible to derive exactlin Sec. lll, we rederive the same results by using an alternate
mainly due to the non-Markovian nature of the single sitellA formalism. In Sec. IV we use the formalism developed in
Gaussian process. It would therefore be useful to find an&ecs. Il and Il to obtain explicit results for the distribution
study some simpler Markovian Gaussian processes withf mean magnetization for some special values of the param-
some tunable parametéwvhich would play the similar role etera. Finally we conclude with a summary and discuss the
as the spatial dimensiahdoes in diffusion equatiorwhere  relative merits of the two formalisms and some applications.
exact calculations can be performed. In this paper we study
the magnetization distributio®?(m) of a family of such Il. METHOD I: GENERALIZATION
Gaussian Markov processes parametrized by an indéy OF KAC'S FORMALISM
varying this parametes, the persistence exponegifor this
process can be varied continuously. The Markovian nature of We consider the Gaussian procegs$) evolving stochas-
the process also makes many exact calculations possible. tically via Eq. (1) and define the “mean magnetization,”
The Markov procesy/(t) that we study in this paper, m(t)= (1) tVy(t")]dt’, where the functiona¥(y) in our
satisfies the following stochastic Langevin equation: case is simply(y)= sgnfy). Let G(y,t|y’,t') denote the
propagator of the process, i.e., the probability that the pro-
dy cess takes the valueat timet given that it was ay’ at time
a=@t“’1’2n(t), (1) t'<t. This can be easily computed for our process and is
given by

where 7(t) is a Gaussian white noise witfy(t))=0 and 1
(n(t) n(ty))=6(t;—t,) and « is a positive parameter. Gy tly' t')= =——=
There are various physical processes that are described by 2m(t =117
the above Langevin equation. For example,der 1/2, y(t)
represents the position of a one-dimensional Brownian ran-
dom walker. Fora=1/4, y(t) can be interpretefil1] to be
the “total magnetization” of a Glauber chain undergoing
zero temperature coarsening dynamics after being quenched %
rapidly from infinite temperature. (e~utmy— 2
The persistence of the procegd) is simply the probabil- n=0
ity for this process not to cross zero up to titmand decays
ast™? for larget. The exponen® for this process can be wherev, are the moments defined by
trivially computed,f= «. The simplest way to derive this is
to define a new time variablg =t such that the equation t e |
vn=<(fOV(y(t )dt ) >

ef(yfy’)2/2(t2“7t’2“).

@

Following Kac [31], we define the moment generating
function

(—w)"

n!

Vp, ©)

4

of motion becomesdy/dt’'={(t') where the new noise
{(t") has zero mean and(t;) {(t5))=6(t;—t5). Butthisis
simply the equation of motion of a one-dimensional Brown-14 compute the moments, , it is useful to first define a set
ian walker whose probability of no return to zero up to time of functionsQ,(y,t) via the recursion relation
t’ decays as-1/\t’ ~t~“. Thus the persistence exponent for
y(t) is simply 6= a. t %

However, we show in the rest of the paper that even Qn+1(y,t)=f dt'f dy'G(y,tly’,t"))V(y")Qn(y',t"),
though the persistence exponeht « trivially for this pro- 0 o
cess, the magnetization distributid®(m) is nontrivial. In
fact, asa and hence# is increased, the shape &f(m) Qo(y,1)=G(y,t[0,0). ®)
changes from concave upwards to convex upwards.d-or )
—1/2 (i.e., for ordinary Brownian walk¢r the distribution !t can then easily be checked that
P(m) was already known exactlyP(m)=1/(7y1—m?) B
[26]. For generaly, while we have not been able to deter- Vn:n!f Q. (y,0)dy. (6)
mine the full distributionP(m) in closed form, we demon- —o
strate below by two completely different methods that the
moments of P(m) can be calculated exactly. In the first Using Egs.(3) and(6), we finally get
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(emm)= fidy Qu(y.b), (7)
whereQ,(y,t) is the generating function
Qu(y,D=2 Qu(y,H(~w)" ®)

Thus the moments of the mean magnetizatioitan be
computed exactly from Ed7) provided we can evaluate the
function Q,(y,t). By using the recursion relation E¢p), it
can be checked th&p,(y,t) satisfies the following integral
equation:

t o
Quy0=6(%.100-u [ dv [~ dy'Gry.dy 1)

XV(y")Quly',t"). 9

Using the definition of the propagat@, this integral equa-
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ngo bna”eaD_n/am):gO cna"e @D _,(0),

©

ngo b,a"e?D _ /a4 1(0) = —go cna"e 2D _411(0). (13

By expanding in powers af and equating coefficients of all
powers ofa we finally obtain the following recursions for the
coefficientsb,, andc,:

. S (m )My D ye(0)
n m=0 (n_m)! D—ﬂ/a(o)

(n odd)

__n—l (—1)™c,, D—m/a+l(0)c (n even
m=o (Nn—=m)! D_,,41(0) "M
bn=(—1)"c,, (9

where we have used few identities satisfied by the parabolic
cylinder functiond34]. Now from Eq.(7) it follows that the

tion can then be converted to a partial differential equation momentsu, = (m¥) satisfy

QuyH _

20—1 azQu(yl‘t)
ot 2

—uVv(y)Qu(y,t) (10

with Q,(y,t=0)=4(y) andV(y) = sgnfy).
We first make the scale transforms

y 1
z=—, a=ut, Quy,t)= t—aF(z,a).

tDt

Substituting in Eq(10) we get the following equation fdF:

aF &2F+ aF+ Vg IE
ag—ag QZE [a a (Z)] )
11
o212
F(z,a=0)= :
N2

whereV(z) = sgn(z). This equation has the following series
solution:

> b,a"e?D_ . (—2)e T4 z<0,

1
\/ﬂ n=0

1
T

F(z,a)=

o)

_ _ 2
> c,a"e @D _, . (2)e 2, z>0,

n=0
(12

V2m

F(z,a)=

whereD,(z) are parabolic cylinder functiori84]. The co-

o

>

k=0

(—a)k

T Mk (15

fj;F(Z,a)dZZ

Finally, substituting the series solution fB{z,a) [Eq. (12)]
in the above equation we obtain

n
Mn=n! \/z E
T m=0

for the even moments, while the odd ones vanish. The coef-
ficentsc,, are determined from Eq14). This thus gives an
iterative scheme to generate all moments of the required dis-
tribution.

(_l)mcm

(n_—m)!Dfm/afl(O)

(16)

Ill. AN ALTERNATE DERIVATION OF THE MOMENTS

There is an alternate scheme to calculate the moments of
the distributionP(m). This scheme assumes statistical inde-
pendence of the successive zero crossing intervals of the pro-
cessy(t) and was first used by Dornic and Godhne in the
context of diffusion equatiof24]. We stress, however, that
while this assumption is only approximate for non-Markov
processes such as the diffusion equafi@4, it is exact for
Markov processes such as the one we study in this paper. An
additional complication in our case arises due to the fact that
the average distance between zero crossings vanishes. This is
a standard result which is true for any Gaussian Markov
procesg32]. In our calculations we introduce this average
distance between two consequtive ze¢bsas a cutoff pa-
rameter and then take the limit)— 0 in the end.

Consider a particular realization of the procg$t) end-
ing at timet. Let at timet the procesy have a positive sign.

Let t; denote the time instant at which thth zero crossing

efficientsb,, andc,, are to be determined from the boundary takes place. Then the mean magnetization is given by

conditions, namely, the continuity of both and JF/dz at
z=0. The initial conditions determinie,=cy=1. Using the
boundary conditions we get

1
m= ?[(t_tj)_(tj_tj_l)-i- .. .]:1_25’
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where

i tiog ti-
J i-1 -2
O L R T L
¢ t t t

Similarly if y(t)<0 then we gek=2£—1. We note that at
anyt, the sign ofy can be positive and negative with equal

probability. Hence if we can find the distribution éfthat of

m can be computed easily. Now in the logarithmic time vari-

able T= In(t), we can write¢ in the form

f=e T e (T Tn-0 e (T"Th-2) . ..

=e M1-eli+e i)
=e X, (17)
where
Xj=1—e li+e iti-it. .., (18
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—e~'X and using the expression fb¢s) given in Eq.(20), it
can be shown that,’s are recursively generated through the
following sets of equations:

2n
2n+1
2r2n+1=2( K )(_1)krk1

2n—1

2
2020t on=— 3, ( k”><—1>kgkrk 22

with ro=1. Note that allr,’'s are independent ofl). The
moments of¢ are then given by

~ 20nry
(€ =a(n)(x")="="" 23

lj=T;—T;_1, and\ is the time from the last zero crossing to and are also independent of the cut@ff. Finally the non-

time t. The variablesX; satisfy Kesten recursion relations

Xj=1—e liX;_;. (19

vanishing even moments ofi can be obtained through

pon=((26-1)") (24)

One then assumes that the successive zero crossing intervals

are statistically independent. In the long time limit the distri-

bution of X is determined by Eqg17) and (19). Since one
can compute the distributions bfand A\, it is then straight-

and clearly do not depend dh).
The final expressions of the first few even moments are as
follows [see Eq(B4) in the Appendix of Ref[24]],

forward though tedious to compute all the moments of the

mean magnetizationy,,=(m") recursively[24].

As noted above, the mean distance between zero cross-

mo=Aq,

ings(l) vanishes and we introduce this as a cutoff parameter.

We now show that the; are actually independent ¢F).

We first note that the Laplace transforms of the distribu- -

tions of | and\, which we denote by (s) andq(s), respec-
tively, are given by[24]

1-(1)g(s)

1+{ha(s)’

20y
M FER(TEL

f(s)=
(20)

whereg(s)=s[1—sA(s)]/2, andA(s) is defined as follows.
Consider the normalized proce¥s=y(t)/\(y?(t)). In the

logarithmic time, T=log(t), this has a stationary autocorrela-
tor, C(T=|T;—T,|)=e~ . Now consider the autocorrela-

tion function A(T) of the “signed” process A(T)
=(sgi'Y(0)]sgi Y(T)]). The quantity A(s) is just the
Laplace transforms ofA(T). Using the fact thaty(T) is
Gaussian with a correlatd@(T), the functionA(T) can be
easily computed,A(T)=(2/7)sin"{C(T)]. In our case,
C(T)=e" " which finally gives

1 1

A=3- B

sta 1l

2a 2/ 2y

whereBJ[ a,b] is the standard Beta function.
It is now convenient to define the momemts=(X")/(1
+(1)g,). Then taking thenth power of the equatioiXX=1

1-2A, '

We have checked that the moments's calculated recur-
sively by this method are identical to those obtained by the
first method in Sec. Il.

IV. MOMENTS FOR SOME SPECIAL VALUES OF «

In this section, we use the formalisms developed in the
previous two sections to derive some explicit results for the
moments of the distributionP(m). While the iterative
schemes developed in the previous sections are exact, it
seems that for general it is quite hard to obtain an exact
closed form expression qf,, for aribitrary n. They have to
be determined only recursively. However, the equations sim-
plify for some special values of the parameterfor which
not just the moments but the full distributid®(m) can be
obtained explicitly.

In order to see that the peak of the distribution shifts from
m=*+1 for small « to m=0 for large «, it is natural to
examine the two extreme limitg=0 and =« for which
fortunately we can obtain exact form of the distribution.
Consider firsta=0. In this case it is somewhat easier to
consider the second method used in Sec. Ill. It can be easily
seen then that all thg,’s vanish while the moments,’s
remain finite. Thus from Eq23) all moments of¢ vanish.
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Hence from Eq(24) we getu,=1 for all evenn. The same 0.8 ' ' '
O—+8 a=0.25

result can also be derived via the first method of Sec. Il by
taking carefully thew— 0 limit in Egs.(14) and(16). Imme-
diate inspection then determines

1
P(m)=§[5(m—1)+ s(m+1)] (26)
£

for «a=0. Now consider the other extreme limit,=c. In
this case, one finds from E@l4) thatc,,=1/m!. Then the
series in Eq(16) just reduces to the expansion of-{1)".
Henceu,=0 for all n. This indicates that fory= oo

P(m)=8(m). (27) 0 s s s S

n

Another case where exact form B{m) can be obtained
is for «=1/2. In this case, using the known values of the
parabolic cylinder functions, it is easy to compute the first

FIG. 1. In this figure the first few nonvanishing moments of
P(m) are plotted fora=1/4, 1/2, and 3/4.

few terms of the seriedc,, n=0,1,2...}={1,1,2,5,14, V. CONCLUSION

42,132,429. ..} from Eqg. (14). We then make an ansatz

c,=(2n)!/[nl(n+1)!] and verify from Eq.(14) that it is In this paper, we have studied the distribution of residence

indeed the solution for arbitrary. Substituting this in Eq. times or equivalently that of mean magnetization of a family

(16), we get of Gaussian markov processes parametrized by an iadex

which takes values continuously from 0 to. We have
(2n)! shown that the shape of the distributi®fm) undergoes a
Mon(a@=1/2)= (222 (28 qualitative change asis increased from O tee. For smalla,

P(m) has peaks at the edges=+1 and has a minimum at

) _ o ~ m=0 whereas for large, the peak of the distribution shifts
and the odd moments are identically zero. A little inspectionyg m=0 with minima at the edgesi= +1. This change in

function changes a parameter was first noted in &%) in the con-
text of diffusion equation. The advantage of the process stud-
1 ied here, apart from representing various physical situations,
P(m)= ﬁ (29 s that the Markov nature of the process makes it possible to
m1l—

derive many exact analytical results.

In this paper we have developed two alternate formalisms
with m varying in [—1,1]. We thus reproduce the well to compute the moments of the residence times or mean
known [26] magnetization distribution for the ordinary ran- magnetization. While both methods yield exact results for
dom walk (@=1/2). the moments, they do so only recursively. A closed form

Unfortunately we were unable to get a closed form ex-expression for the moments and hence that of the full distri-
pression ofpu, for other values ofe. For example, for bution is possible only for some special values of the param-
a=1/4, we get by solving Eq14) the first few terms of the eter « that characterizes the process. But unfortunately this
sequence, {c,,n=0,1,2,..}={1,3,72,3663,292824, special set of solvable values @fturn out to be the same for
32227002, ..}. We found, however, that this is not listed both these methods. Thus, as far as the problem studied in
in the catalog of known integer sequengdS] and we could  this paper is concerned, both these methods are on equal
not guess any formula for this sequence. footing. However, there are other problems where the former

Thus as expected, the distributions of mean magnetizatiomethod that generalizes Kac’s formalism seems to have an
show a qualitative change in shape@ashanges. As we go advantage over the second method. We briefly mention be-
from small « to large «, the peak of the distribution shifts low one such application.
from the edges to the center. This can be understood physi- The general problem of a random walker in space with
cally since for smalla the noise becomes small as time moving boundaries has been well studied and has a lot of
increases and the probability of zero crossing becomes negpplications[33]. It would be interesting to study the resi-
ligible. On the other hand, for large, the noise increases dence time distribution in such problems. For example, con-
with time and the magnetization keeps changing sign andider a random walker moving in one dimension and ask
thus the most probable value gets peaketh&t0. what is the distribution of the fraction of time spent by the

While obtaining an exact form oP(m) is difficult for ~ walker in the region bounded by and a pointO that
generale, there is no problem in obtaining the exact valuesmoves deterministically asy(t) wherexg(t) is some arbi-
of the moments oP(m) by using the recursion relations and trary function oft. For the special case whery(t)=ct
the known values of the parabolic cylinder functions. In Fig.wherec is a constant, this problem can be solved by using
1 we plot the moments fow=1/4, 1/2, and 3/4. the techniques presented in Sec. Il of this paper. The calcu-
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lations will be similar except that the potentiat(z)  efforts of this paper, exact analytical calculation Bfm)
= sgn(z) as used in Eq(11) should be replaced by/(z) seems quite nontrivial even for the simple Gaussian Markov
= ¢#(z—c). The corresponding equations can be solved aprocesses studied here. Thus at present, the only hope to
before except that now the boundary conditions are to beomputeP(m) for non-Markov processes which are richer
applied atz=c. We note, however, that the second methodand more abundant in nature, seems to be via numerical or
illustrated in Sec. Ill does not seem to be easily generalizabl@pproximate methods.
to solve this problem.

We conclude with one last remark. The magnetization
distribution P(m) is a useful quantity to study for a generic ACKNOWLEDGMENTS
stochastic process and contains a lot of useful information
regarding ergodicity, etc. However, as is obvious from the We thank D. Dhar and M. Barma for useful discussions.
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